Part Number Hot Search : 
CAT5241 MACH4 2M18X3 SK7472 SKKQ800 MMSZ52 1N1197 TEA6811V
Product Description
Full Text Search
 

To Download M69AR048B Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 M69AR048B
32 Mbit (2Mb x16) 1.8V Asynchronous PSRAM
FEATURES SUMMARY

SUPPLY VOLTAGE: 1.65 to 1.95V ACCESS TIMES: 70ns, 80ns, 85ns LOW STANDBY CURRENT: 100A DEEP POWER-DOWN CURRENT: 10A BYTE CONTROL: UB/LB PROGRAMMABLE PARTIAL ARRAY COMPATIBLE WITH STANDARD LPSRAM TRI-STATE COMMON I/O 8 WORD PAGE ACCESS CAPABILITY: 25ns WIDE OPERATING TEMPERATURE - TA = -30 to +85C PARTIAL POWER-DOWN MODES - Deep Power-Down - 4 Mbit Partial Power-Down - 8 Mbit Partial Power-Down - 16 Mbit Partial Power-Down
Figure 1. Package
FBGA
TFBGA48 (ZB) 6 x 8mm
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 3. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Address Inputs (A0-A20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Data Inputs/Outputs (DQ8-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chip Enable (E1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chip Enable (E2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Upper Byte Enable (UB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Lower Byte Enable (LB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 VCC Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
October 2005
1/29
M69AR048B
Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Power-Down Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Power-Down Program Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 3. Power-Down Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 4. Power-Down Program Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 5. Power-Down Configuration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 6. Power-Down Configuration Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 7. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 8. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 5. AC Measurement Load Circuit 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 6. AC Measurement Load Circuit 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 9. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Figure 7. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 10. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 11. Read Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Figure 8. Address Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 9. Address and Output Enable Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . . 15 Figure 10.UB/LB Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Figure 11.Page Address and Chip Enable Controlled, Read Mode AC Waveforms . . . . . . . . . . . . 16 Figure 12.Random and Page Address Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . . 17 Table 12. Write Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Figure 13.Chip Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 14.Write Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Figure 15.Write Enable and UB/LB Controlled, Write AC Waveforms 1 . . . . . . . . . . . . . . . . . . . . . 20 Figure 16.Write Enable and UB/LB Controlled, Write AC Waveforms 2 . . . . . . . . . . . . . . . . . . . . . 20 Figure 17.Write Enable and UB/LB Controlled, Write AC Waveforms 3 . . . . . . . . . . . . . . . . . . . . . 21 Figure 18.Write Enable and UB/LB Controlled, Write AC Waveforms 4 . . . . . . . . . . . . . . . . . . . . . 21 Figure 19.Chip Enable Controlled, Read and Write Mode AC Waveforms . . . . . . . . . . . . . . . . . . . 22 Figure 20.Chip Enable, Write Enable, Output Enable Controlled, Read/Write AC Waveforms. . . . 22 Figure 21.Output Enable and Write Enable Controlled, Read and Write Mode AC Waveforms . . . 23 Figure 22.Output Enable, Write Enable and UB/LB Controlled, Read/Write AC Waveforms . . . . . 23 Table 13. Standby Mode AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 23.Power-Down Programming AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 24.Power-Down Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2/29
M69AR048B
Figure 25.Power-Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 26.Standby Mode Entry AC Waveforms, After Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Figure 27.TFBGA48 6x8mm - 6x8 ball array, 0.75 mm pitch, Package Outline, Bottom View . . . . 26 Table 14. TFBGA48 6x8mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data. . . . . . . . 26 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table 15. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Table 16. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3/29
M69AR048B
SUMMARY DESCRIPTION
The M69AR048B is a 32 Mbit (33,554,432 bit) CMOS memory, organized as 2,097,152 words by 16 bits, and is supplied by a single 1.65V to 1.95V supply voltage range. M69AR048B is a member of STMicroelectronics 1T/1C (one transistor per cell) memory family. These devices are manufactured using dynamic random access memory cells, to minimize the cell size, and maximize the amount of memory that can be implemented in a given area. However, through the use of internal control logic, the device is fully static in its operation, requiring no external clocks or timing strobes, and has a standard Asynchronous SRAM Interface. The internal control logic of the M69AR048B handles the periodic refresh cycle, automatically, and without user involvement. Write cycles can be performed on a single Byte by using Upper Byte Enable (UB) and Lower Byte Enable (LB). The device can be put into standby mode using Chip Enable (E1) or in Power-Down mode by using Chip Enable (E2). The device features several Power-Down modes, making of power saving a user configurable option: Partial Power-Down (4 Mbits, 8 Mbits or 16 Mbits) performs a limited refresh of the part of the PSRAM array that contains essential data. Deep Power-Down achieves a very low current consumption by halting all the internal activities. Since the refresh circuitry is halted, the duration of the power-down should be less than the maximum period for refresh.
Figure 2. Logic Diagram
Table 1. Signal Names
A0-A20 Address Input Data Input/Output Chip Enable, Power-Down Output Enable Write Enable Upper Byte Enable Lower Byte Enable Supply Voltage Ground Not Connected (no internal connection)
VCC
DQ0-DQ15 E1, E2
21 A0-A20 W E1 E2 G UB LB M69AR048B
16 DQ0-DQ15
G W UB LB VCC VSS NC
VSS
AI08154
4/29
M69AR048B
Figure 3. TFBGA Connections (Top view through package)
1 2 3 4 5 6
A
LB
G
A0
A1
A2
E2
B
DQ8
UB
A3
A4
E1
DQ0
C
DQ9
DQ10
A5
A6
DQ1
DQ2
D
VSS
DQ11
A17
A7
DQ3
VCC
E
VCC
DQ12
NC
A16
DQ4
VSS
F
DQ14
DQ13
A14
A15
DQ5
DQ6
G
DQ15
A19
A12
A13
W
DQ7
H
A18
A8
A9
A10
A11
A20
AI07242
5/29
M69AR048B
SIGNAL DESCRIPTIONS
See Figure 2, Logic Diagram, and Table 1, Signal Names, for a brief overview of the signals connected to this device. Address Inputs (A0-A20). The Address Inputs select the cells in the memory array to access during Read and Write operations. Data Inputs/Outputs (DQ8-DQ15). The Upper Byte Data Inputs/Outputs carry the data to or from the upper part of the selected address during a Write or Read operation, when Upper Byte Enable (UB) is driven Low. Data Inputs/Outputs (DQ0-DQ7). The Lower Byte Data Inputs/Outputs carry the data to or from the lower part of the selected address during a Write or Read operation, when Lower Byte Enable (LB) is driven Low. Chip Enable (E1). When asserted (Low), the Chip Enable, E1, activates the memory state machine, address buffers and decoders, allowing Read and Write operations to be performed. When de-asserted (High), all other pins are ignored, and the device is put, automatically, in low-power Standby mode. Chip Enable (E2). The Chip Enable, E2, puts the device in Power-down mode (Deep Power-Down or a Partial Power-Down mode ) when it is driven Low. Deep Power-down mode is the lowest power mode. Output Enable (G). The Output Enable, G, provides a high speed tri-state control, allowing fast read/write cycles to be achieved with the common I/O data bus. Write Enable (W). The Write Enable, W, controls the Bus Write operation of the device. Upper Byte Enable (UB). The Upper Byte Enable, UB, gates the data on the Upper Byte Data Inputs/Outputs (DQ8-DQ15) to or from the upper part of the selected address during a Write or Read operation. Lower Byte Enable (LB). The Lower Byte Enable, LB, gates the data on the Lower Byte Data Inputs/Outputs (DQ0-DQ7) to or from the lower part of the selected address during a Write or Read operation. VCC Supply Voltage. The VCC Supply Voltage supplies the power for all operations (Read, Write, etc.) and for driving the refresh logic, even when the device is not being accessed. VSS Ground. The VSS Ground is the reference for all voltage measurements.
6/29
M69AR048B
Figure 4. Block Diagram
INTERNAL CLOCK GENERATOR ROW DECODER
ARBITRATION LOGIC REFRESH CONTROLLER
ADDRESS
DYNAMIC MEMORY ARRAY
E1 E2 G W LB UB VCC VSS POWER CONTROLLER CONTROL LOGIC
INPUT/OUTPUT BUFFER COLUMN DECODER
DQ0-DQ7 DQ8-DQ15
ADDRESS
AI07221
7/29
M69AR048B
OPERATION
Operational modes are determined by device control inputs W, E1, E2, LB and UB as summarized in the Operating Modes table (see Table 2). Power Up Sequence Because the internal control logic of the M69AR048B needs to be initialized, the following power-up procedure must be followed before the memory is used (see Figure 25., Power-Up Mode AC Waveforms): - Apply power and wait for VCC to stabilize - Wait 300s while driving both Chip Enable signals (E1 and E2) High the timing requirements. Figures 19, 20, 21 and 22 show Read and Write mode AC waveforms. Standby Mode The device is in Standby mode when: - Chip Enable (E1) is High and - Chip Enable (E2) is High The input/output buffers and the decoding/control logic are switched off, but the dynamic array continues to be refreshed. In this mode, the memory current consumption, ISB, is reduced, and the data remains valid. See Figure 26., Standby Mode Entry AC Waveforms, After Read and Table 13., Standby Mode AC Characteristics for details. Power-Down Modes Description. The M69AR048B has four Powerdown modes, Deep Power-down, 4Mbit Partial Power-Down, 8Mbit Partial Power-Down, and 16Mbit Partial Power-Down (see Table 3). These can be entered using a series of read and write operations. Each mode has the following features. The default state is Deep Power-Down and it is the lowest power consumption but all data will be lost once E2 is brought Low for Power-down. No sequence is required to put the device in Deep Power-down mode after Power-up. The device is in one of the Power-Down modes when: - Chip Enable (E2) is Low All the device logic is switched off and all internal operations are suspended. This gives the lowest power consumption. In this operating mode, no refresh is performed, and data is lost if the duration is longer than 10ns. This mode is useful for those applications where the data contents are no longer needed, and can be lost, but where reduced current consumption is of major importance. See Figure 24., Power-Down Mode AC Waveforms and Table 13., Standby Mode AC Characteristics for details. Power-Down Program Sequence. The PowerDown Program sequence is used to program the Power-Down Configuration. It requires a total of six read and write operations, with specific addresses and data. Between each read or write operation the device must be in Standby mode. Table 4 and Figure 23. show the sequence. In the first cycle, the Byte at the highest memory address (MSB) is read. In the second and third cycles, the data (RDa) read by first cycle are written back. If the third cycle is written into a different address, the sequence is aborted, and the data written by the third cycle is valid as in a normal write operation. In the fourth and fifth cycles, the Power-Down Config-
Read Mode The device is in Read mode when: - Write Enable (W) is High and - Output Enable (G) is Low and - the two Chip Enable signals are asserted (E1 is Low, and E2 is High). The time taken to enter Read mode (tELQV, tGLQV or tBLQV) depends on which of the above signals was the last to reach the appropriate level. Data out (DQ15-DQ0) may be indeterminate during tELQX, tGLQX and tBLQX, but data will always be valid during tAVQV. See Figures 8, 9, 10, 11 and 12 and Table 11., Read Mode AC Characteristics, for details of when the outputs become valid. Write Mode The device is in Write mode when - Write Enable (W) is Low and - at least one of Upper Byte Enable (UB) and Lower Byte Enable (LB) is Low - the two Chip Enable signals are asserted (E1 is Low, and E2 is High). The Write cycle begins just after the event (the falling edge) that causes the last of these conditions to become true (tAVWL or tAVEL or tAVBL). The Write cycle is terminated by the rising edge of Write Enable (W) or Chip Enable (E1), whichever occurs first. If the device is in Write mode (Chip Enable (E1) is Low, Output Enable (G) is Low, Upper Byte Enable (UB) and/or Lower Byte Enable (LB) is Low), then Write Enable (W) will return the outputs to high impedance within tWHDZ of its rising edge. Care must be taken to avoid bus contention in this type of operation. Data input must be valid for tDVWH before the rising edge of Write Enable (W), or for tDVEH before the rising edge of Chip Enable (E1), whichever occurs first, and remain valid for tWHDZ, tBHDZ or tEHDZ. See Figures 13, 14, 15, 16, 17 and 18, and Table 12., Write Mode AC Characteristics, for details of
8/29
M69AR048B
uration data is written. The data of the fourth cycle must be all 0s, and the data of the fifth cycle is the Power-Down Configuration data (see Table 5., Power-Down Configuration Data). If the fourth cycle is written into a different address, the sequence is aborted. In the last cycle, a read is made from the specific Power-Down Configuration address (see Table 6., Power-Down Configuration Addresses). The Power-Down Configuration data Table 2. Operating Modes
Operation Standby (Deselected) Power-down (2) No Read (1) Lower Byte Read (1) Lower Byte Write (1) No Write Upper Byte Read (1) Upper Byte Write (1) Word Read (1) Word Write (1) E1 VIH X VIL VIL VIL VIL VIL VIL VIL VIL E2 VIH VIL VIH VIH VIH VIH VIH VIH VIH VIH W X X VIH VIH VIL VIL VIH VIL VIH VIL G X X VIL VIL VIH VIH VIL VIH VIL VIH(3) LB X X VIH VIL VIL VIH VIH VIH VIL VIL UB X X VIH VIH VIH VIH VIL VIL VIL VIL DQ0-DQ7 Hi-Z Hi-Z Hi-Z Data Output Data Input Hi-Z Hi-Z Hi-Z Data Output Data Input DQ8-DQ15 Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Data Output Data Input Data Output Data Input Power Standby (ISB) Power-Down (ICCPD, ICCP4, ICCP8 or ICCP16) Output Disable Active (ICC) Active (ICC) Output Disable Active (ICC) Active (ICC) Active (ICC) Active (ICC)
and address must correspond, otherwise the sequence is aborted. When this sequence is performed to take the device from one Partial Power-Down mode to another, the write data may be lost. So, if a Partial Power-Down mode is used, this sequence should be performed prior to any normal read or write operations.
Note: X = VIH or VIL. 1. Should not be kept in this logic condition for a period longer than 1s. 2. Power-Down mode can be entered from Standby state and all DQ pins are in High-Z state. The Power-Down current and data retention depend on the selection of the Power-Down programming. 3. G can be VIL during the Write operation if the following conditions are satisfied: a. Write pulse is initiated by E1 (E1 Controlled Write timing), or cycle time of the previous operation cycle is satisfied; b. G stays VIL during the entire Write cycle.
Table 3. Power-Down Modes
Mode Deep Power-Down (default) 4M Partial Power-Down 8M Partial Power-Down 16M Partial Power-Down Data Retention No 4 Mbit 8 Mbit 16 Mbit Retention Address N/A 00000h - 3FFFFh 00000h - 7FFFFh 00000h - FFFFFh
9/29
M69AR048B
Table 4. Power-Down Program Sequence
Cycle # 1st 2nd 3rd 4th 5th 6th Operation Read Write Write Write Write Read Address 1FFFFFh (MSB) 1FFFFFh 1FFFFFh 1FFFFFh 1FFFFFh PDC Address(1) Data Read Data (RDa) RDa RDa 0000h PDC Data(1) Read Data (RDb)
Note: 1. PDC Power-Down Configuration.
Table 5. Power-Down Configuration Data
Mode Deep Power-Down (default) 4Mb Partial Power-Down 8Mb Partial Power-Down 16Mb Partial Power-Down Power-Down Configuration Data DQ15-DQ9 0 0 0 0 DQ8-DQ2 0 0 0 0 DQ1 1 1 0 0 DQ0 1 0 1 0
Table 6. Power-Down Configuration Addresses
Mode Deep Power-Down (default) 4Mb Partial Power-Down 8Mb Partial Power-Down 16Mb Partial Power-Down Power-Down Configuration Addresses A20 1 0 1 0 A19 1 1 0 0 A18-A0 1 1 1 1 Binary 1FFFFFh 0FFFFFh 17FFFFh 07FFFFh
10/29
M69AR048B
MAXIMUM RATING
Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. These are stress ratings only and operation of the device at Table 7. Absolute Maximum Ratings
Symbol IO TA TSTG VCC VIO Output Current Ambient Operating Temperature Storage Temperature Core Supply Voltage Input or Output Voltage Parameter Min -50 -30 -55 -0.5 -0.5 Max 50 85 125 3.6 3.6 Unit mA C C V V
these or any other conditions above those indicated in the Operating sections of this specification is not implied. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.
11/29
M69AR048B
DC AND AC PARAMETERS
This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 8, Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters.
Table 8. Operating and AC Measurement Conditions
M69AR048B Parameter Min VCC Supply Voltage1 Ambient Operating Temperature Load Capacitance (CL) Input Pulse Voltages Input and Output Timing Ref. Voltages Output Transition Timing Ref. Voltages Input Transition Time2 (t ) between VIL and VIH 0 VCC/2 VRL = 0.3VCC; VRH = 0.7VCC 5 1.75 -30 50 VCC 0 VCC/2 VRL = 0.3VCC; VRH = 0.7VCC 5 70 Max 1.95 85 Min 1.65 -30 50 VCC 80, 85 Max 1.95 85 V C pF V V V ns Unit
Note: 1. All voltages are referenced to VSS. 2. The Input Transition Time used in AC measurements is 5ns. For other input transition times, see Table 8.
Figure 5. AC Measurement Load Circuit 1
VCC VCC/2
Figure 6. AC Measurement Load Circuit 2
VCC VCC
50 DEVICE UNDER TEST 0.1F
16.7k DEVICE UNDER TEST 0.1F
OUT CL
CL
16.7k
CL includes JIG capacitance
AI07222d
CL includes JIG capacitance
AI06773
Table 9. Capacitance
Symbol CIN COUT Parameter Input Capacitance on all pins (except DQ) Output Capacitance Test Condition VIN = 0V VOUT = 0V Min Max 5 8 Unit pF pF
12/29
M69AR048B
Figure 7. AC Measurement I/O Waveform
I/O Timing Reference Voltage VCC VCC/2 0V
Output Transition Timing Reference Voltages VCC 0.7VCC 0.3VCC
AI04831b
0V
Table 10. DC Characteristics
Symbol ICC1 VCC Active Current ICC2 Parameter Test Condition VCC = 1.95V, VIN = VIH or VIL, E1 = VIL and E2 = VIH, IOUT = 0mA tRC / tWC = minimum tRC / tWC = 1 s Min Max 25 3 Unit mA mA
ICC3
VCC Page Read Current
VCC = 1.95V, VIN = VIH or VIL, E1 = VIL and E2 = VIH, IOUT = 0mA, tPRC = min. Deep PowerDown
10
mA
ICCPD ICCP4 ICCP8 ICCP16 ILI ILO ISB VIH (1) VIL (2) VOH VOL Input Leakage Current Output Leakage Current Standby Supply Current CMOS Input High Voltage Input Low Voltage Output High Voltage Output Low Voltage VCC Power-Down Current VCC = 1.95V, VIN = VIH or VIL, E2 0.2V
10 40 50 65 -1 -1 1 1 100 0.8VCC -0.3 VCC + 0.2 0.2VCC
A A A A A A A V V V
4Mb Partial(3) 8Mb Partial(3)
16Mb Partial(3) 0V VIN VCC 0V VOUT VCC VCC = 1.95V, VIN 0.2V or VIN VCC -0.2V, E1 = E2 VCC -0.2V
VCC = 1.65V, IOH = -0.5mA IOL = 1mA
1.4 0.4
V
Note: 1. Maximum DC voltage on input and I/O pins is VCC + 0.2V. During voltage transitions, input may overshoot to VCC + 1.0V for a period of up to 5ns. 2. Minimum DC voltage on input or I/O pins is -0.3V. During voltage transitions, input may undershoot to VSS -1.0V for a period of up to 5ns. 3. Partial stands for Partial Power-Down.
13/29
M69AR048B
Table 11. Read Mode AC Characteristics
M69AR048B Symbol tAVAX (1,2,9) tAVAX2(1,5,6,9) tAVEH2(1,5,6,9) tAVEL tAVQV (4,9) tAVQV2
(5,9)
Alt.
Parameter Min
80 Max 1000 1000 1000 Min 85 30 30 -5 80 70 20 10 10 5 5 20 30 0 -5 15 5 20 80 80 1.65V VCC 1.75V 1.75V VCC 1.95V 5 5 20 45 0 0 1000 1000 80 70 5 5 85 85 0 -5 15 5 5 5
85 Max 1000 1000 1000
Unit
tRC tPRC tPRC tASC tAA tPAA tAX tAXP tOH tOH tBHZ tBA tBLZ tCHAH tCP tOH tCHZ tRC tRC tCE tCLZ tOH tOHZ tOE tOLZ
Address Valid Time Page Read Cycle Time Page Read Cycle Time Address Valid to Chip Enable Low Address Valid to Output Valid Page Address Access Time Address Invalid Time Page Address Invalid Time Data hold from address change Upper/Lower Byte Enable High to Output Transition Upper/Lower Byte Enable High to Output Hi-Z Upper/Lower Byte Enable Low to Output Valid Upper/Lower Byte Enable Low to Output Transition Chip Enable High to Address Invalid Chip Enable High to Chip Enable Low Chip Enable High to Output Transition Chip Enable High to Output Hi-Z Read Cycle Time Read Cycle Time Chip Enable Low to Output Valid 1.65V VCC 1.75V 1.75V VCC 1.95V
80 25 25 -5
ns ns ns ns
85 70 25 10 10
ns ns ns ns ns ns ns
tAXAV (4,7) tAXAV2
(5,7)
tAXQX tBHQX tBHQZ tBLQV(9) tBLQX (3) tEHAX (8) tEHEL tEHQX tEHQZ tELAX (1,2) tELEH (1,2) tELQV(9) tELQX (3) tGHQX tGHQZ tGLQV
(9)
20 35
ns ns ns ns ns ns
20 1000 1000 85 70
ns ns ns ns ns ns
Chip Enable Low to Output Transition Output Data Hold Time Output Enable High to Output Hi-Z Output Enable Low to Output Valid Output Enable Low to Output Transition
20 50
ns ns ns
tGLQX (3)
Note: 1. Maximum value is applicable if E1 is kept Low without change of address input of A3 to A20. If needed by system operation, please contact your local ST representative for relaxation of the 1000ns limitation. 2. Address should not be changed within minimum Read Cycle Time. 3. The output load 5pF without any other load. 4. Applicable to A3 to A20 when E1 is kept Low. 5. Applicable only to A0, A1 and A2 when E1 is kept Low for the page address access. 6. In case Page Read Cycle is continued with keeping E1 stays Low, E1 must be brought to High within 4s. In other words, Page Read Cycle must be closed within 4s. 7. Applicable when at least two of address inputs among applicable are switched from previous state. 8. Minimum Read Cycle TIme and minimum Page Read Cycle Time must be satisfied. 9. Values obtained with AC Measurement Load Circuit 1 (see Figure 5). If the test conditions correspond to AC Measurement Load Circuit 2 (see Figure 6), 10ns must be added to the times given in the above table.
14/29
M69AR048B
Figure 8. Address Controlled, Read Mode AC Waveforms
A0-A20 tAVEL tELQV E1 tEHEL tGLQV G tBLQV LB, UB tBLQX tGLQX tELQX DQ0-DQ15 VALID DATA OUTPUT
AI09397
ADDRESS VALID tELEH tEHAX
VALID tAVEL
tEHQZ
tGHQZ
tBHQZ tEHQX
Note: E2 = High, W = High.
Figure 9. Address and Output Enable Controlled, Read Mode AC Waveforms
tAXAV A0-A20 tAVAX ADDRESS VALID tAVQV E1 tGLQV G tGHQX UB, LB tGLQX DQ0-DQ15 tAXQX DATA OUT DATA OUT
AI09398
tAVAX ADDRESS VALID tAVQV tAXAV
tAXAV
tGHQZ
Note: Write Enable (W) = High, E2 = High.
15/29
M69AR048B
Figure 10. UB/LB Controlled, Read Mode AC Waveforms
tAXAV A0-A20 tAVQV E1 LB tBHQZ tBLQV tBHQZ Low tBLQV tBLQV tAVAX ADDRESS VALID tAXAV
UB
tBLQX DQ0-DQ7
tBHQX VALID DATA OUT
tBLQX
tBHQX VALID DATA OUT tBHQZ
tBLQX DQ8-DQ15
tBHQX VALID DATA OUTPUT
ai09399
Note: E2 = High, G = Low, W = High.
Figure 11. Page Address and Chip Enable Controlled, Read Mode AC Waveforms
tELEH A20-A3 ADDRESS VALID tAVAX2 tAXAV2 A2-A0 tAVEL E tELQV G tEHQZ ADDRESS VALID tELAX tAXAV2 ADDRESS VALID tAVQV2 tAVAX2 tAXAV2 ADDRESS VALID tAVQV2 tAVEH2 ADDRESS VALID tAVQV2 tEHAX
LB, UB tELQX DQ0-DQ15 tAXQX tAXQX tAXQX tEHQX
VALID DATA OUTPUT (Normal Access)
VALID DATA OUTPUT (Page Access)
AI09800
Note: Write Enable (W) = High, E2 = High.
16/29
M69AR048B
Figure 12. Random and Page Address Controlled, Read Mode AC Waveforms
tAXAV A20-A3 tAVAX ADDRESS VALID tAXAV2 tAVAX A2-A0 tAVQV E Low tGLQV G tBLQV LB, UB tGLQX tBLQX DQ0-DQ15 tAXQX DATA OUT (Normal Access) tAXQX tAXQX DATA OUT (Normal Access) tAXQX ADDRESS VALID tAVQV2 tAXAV tAVAX2 ADDRESS VALID tAVAX ADDRESS VALID tAXAV2 tAVAX ADDRESS VALID tAVQV tAVAX2 ADDRESS VALID tAVQV2 tAXAV
DATA OUT (Page Access)
DATA OUT (Page Access)
AI09801
Note: E2 = High.
17/29
M69AR048B
Table 12. Write Mode AC Characteristics
M69AR048B Symbol Alt. Parameter Min tAVAX (1,2) tAVBL (2) tAVEL (2) tAVWL (2) tAXAV (5) tBHAX (4) tBHDZ tBLBH (3) tBLBH2 tBLWH (3) tDVBH tDVEH tDVWH tEHAX (4) tEHDZ tEHEL tELAX (1,2) tELEH (3) tGHAV (7) tGHEL (6) tWHAX (4) tWHDZ tWLBH (3) tWLWH (3) tWC tAS tAS tAS tAXW tBR tDH tBW tBWO tBW tDS tDS tDS tWRC tDH tCP tWC tCW tOES tOHCL tWR tDH tWP tWP Write Cycle Time Address Valid to LB, UB Low Address Valid to Chip Enable Low Address Valid to Write Enable Low Address Invalid Time for Write LB, UB High to Address Transition LB, UB High to Input High-Z LB, UB Low to LB, UB High LB, UB Low to LB, UB High for Page Access LB, UB Low to Write Enable High Input Valid to LB, UB High Input Valid to Chip Enable High Input Valid to Write Enable High Chip Enable High to Address Transition Chip Enable High to Input High-Z Chip Enable High to Chip Enable Low Write Cycle Time Chip Enable Low to Chip Enable High Output Enable High to Address Valid Output Enable High to Chip Enable Low Write Enable High to Address Transition Write Enable High to Input High-Z Write Enable Low to LB, UB High Write Enable Low to Write Enable High 15 0 45 20 45 20 20 20 15 0 15 80 45 0 -5 15 0 45 45 1000 1000 80 0 0 0 10 1000 15 0 50 20 50 20 20 20 15 0 15 85 50 0 -5 15 0 50 50 1000 1000 80 Max 1000 Min 85 0 0 0 10 1000 85 Max 1000 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns Unit
Note: 1. Maximum value is applicable if E1 is kept Low without any address change. If needed by system operation, please contact your local ST representative for relaxation of the 1000ns limitation. 2. Minimum value must be equal to or greater than the sum of write pulse (tCW, tWP or tBW) and write recovery time (tWRC, tWR or tBR). 3. Write pulse is defined from the falling edge of E1, W, or LB/UB, whichever occurs last. 4. Write recovery is defined from Write pulse is defined from the rising edge of E1, W, or LB/UB, whichever occurs first. 5. Applicable to any address change when E1 stays Low. 6. If G is Low after minimum tGHEL, the read cycle is initiated. In other words, G must be brought High within 5ns after E1 is brought Low. Once the read cycle is initiated, new write pulse should be input after minimum Read Cycle Time is met. 7. If G is Low after new address input, the read cycle is initiated. In other words, G must be brought High at the same time or before new address valid. Once the read cycle is initiated, new write pulse should be input after minimum Read Cycle Time is met.
18/29
M69AR048B
Figure 13. Chip Enable Controlled, Write AC Waveforms
tELAX A0-A20 ADDRESS VALID tEHAX tAVEL E1 tWHAX tAVWL W tBHAX tAVBL LB, UB tGHEL G tDVEH tDVWH tDVBH VALID DATA INPUT
ai09802
tELEH
tAVEL
tWLWH
tAVWL
tBLBH
tAVBL
tEHDZ tWHDZ tBHDZ
DQ0-DQ15
Note: E2 = High.
Figure 14. Write Enable Controlled, Write AC Waveforms
tAVAX A0-A20 ADDRESS VALID tAXAV E1 Low tAVWL W tWLWH tAVWL tWLWH tWHAX tAVAX ADDRESS VALID tWHAX
LB, UB tGHAV G tDVWH tGHQZ DQ0-DQ15 VALID DATA INPUT tWHDZ tDVWH VALID DATA INPUT
AI09803
tWHDZ
Note: E2 = High.
19/29
M69AR048B
Figure 15. Write Enable and UB/LB Controlled, Write AC Waveforms 1
tAVAX A0-A20 ADDRESS VALID tAXAV E1 Low tAVWL W LB tBHAX tBHAX tWLBH tAVWL tWLBH tAVAX ADDRESS VALID
UB
tDVBH DQ0-DQ7 VALID DATA INPUT
tBHDZ
tDVBH DQ8-DQ15 VALID DATA INPUT
tBHDZ
AI09804
Note: E2 = High.
Figure 16. Write Enable and UB/LB Controlled, Write AC Waveforms 2
tAVAX A0-A20 ADDRESS VALID tAXAV E1 Low tWHAX W LB tAVBL tBLWH tWHAX tAVAX ADDRESS VALID tAXAV tAXAV
UB
tAVBL
tBLWH
tDVWH DQ0-DQ7 VALID DATA INPUT
tWHDZ
tDVWH DQ8-DQ15 VALID DATA INPUT
tWHDZ
AI09805
Note: E2 = High.
20/29
M69AR048B
Figure 17. Write Enable and UB/LB Controlled, Write AC Waveforms 3
tAVAX A0-A20 ADDRESS VALID tAXAV E1 Low tAVAX ADDRESS VALID tAXAV tAXAV
W LB tAVBL tBLBH tBHAX
UB
tAVBL
tBLBH
tBHAX
tDVBH DQ0-DQ7 VALID DATA INPUT
tBHDZ
tDVBH DQ8-DQ15 VALID DATA INPUT
tBHDZ
AI09806
Note: E2 = High.
Figure 18. Write Enable and UB/LB Controlled, Write AC Waveforms 4
tAVAX A0-A20 ADDRESS VALID tAXAV E1 Low tAVAX ADDRESS VALID tAXAV tAXAV
W tBHAX LB tAVBL tBLBH tBLBH
tBLBH2 tDVBH DQ0-DQ7 VALID DATA INPUT tBHDZ tDVBH VALID DATA INPUT tBLBH2 UB tAVBL tBLBH tAVBL tBLBH tBHAX tBHDZ
tDVBH DQ8-DQ15 VALID DATA INPUT
tBHDZ tDVBH VALID DATA INPUT
tBHDZ
AI09807
Note: E2 = High.
21/29
M69AR048B
Figure 19. Chip Enable Controlled, Read and Write Mode AC Waveforms
tELAX A0-A20 tEHAX E1 tEHEL W tELEH tEHEL tELQV WRITE ADDRESS tAVEL tEHAX tELAX(read) READ ADDRESS tAVEL (read) tEHAX(read)
UB, LB tGHEL G tEHQZ tEHQX DQ0-DQ15 READ DATA OUTPUT tDVEH WRITE DATA INPUT
ai09808
tELQX tEHDZ tEHQX
Note: Write address is valid from either E1 or W of last falling edge.
Figure 20. Chip Enable, Write Enable, Output Enable Controlled, Read/Write AC Waveforms
tELAX A0-A20 tEHAX E1 tEHEL W tWLWH tEHEL tELQV WRITE ADDRESS tAVEL tWHAX tELAX(read) READ ADDRESS tAVEL (read) tEHAX(read)
UB, LB tGHEL G tEHQZ tEHQX DQ0-DQ15 READ DATA OUTPUT tDVWH WRITE DATA INPUT tGLQX tWHDZ tGHQX READ DATA OUTPUT
ai09809
tGLQV
Note: G can be Low fixed in write operation under E1 control read-write-read operation.
22/29
M69AR048B
Figure 21. Output Enable and Write Enable Controlled, Read and Write Mode AC Waveforms
tAXAV A0-A20 tAVAX WRITE ADDRESS tAXAV E1 Low tAVWL W tWLWH tWHAX tAVAX(read) READ ADDRESS tAVQV tAXAV
UB, LB tAVGL G tGHQZ tGHQX DQ0-DQ15 DATA OUT tDVWH DATA IN tGLQX tWHDZ tGHQZ tGHQX DATA OUT
ai09810
tGLQV
Note: E1 can be tied to Low for W and G controlled operation. When E1 is tied to Low, output is exclusively controlled by G.
Figure 22. Output Enable, Write Enable and UB/LB Controlled, Read/Write AC Waveforms
tAXAV A0-A20 tAVAX WRITE ADDRESS tAXAV E1 Low tAVAX(read) READ ADDRESS tAVQV tAXAV
W tAVBL UB, LB tAVGL G tBHQZ tBHQX DQ0-DQ15 DATA OUT tDVBH DATA IN tBLQX tBHDZ tBHQZ tBHQX DATA OUT
ai09811
tBLBH
tBHAX
tBLQV
Note: E1 can be tied to Low for W and G controlled operation. When E1 is tied to Low, output is exclusively controlled by G.
23/29
M69AR048B
Table 13. Standby Mode AC Characteristics
M69AR048B Symbol Alt. Parameter 80, 85 Min tCLEX tEXCH tEHEV (1) tCHEL (2) tEHCH tEHGL tEHWL (3) t (4)
Note: 1. 2. 3. 4.
Unit Max ns ns s s s ns ns 25 ns
tCSP tC2LP tCHH tCHHP tCHS tCHOX tCHWX t
E2 Low Setup Time for Power-Down Entry E2 Low Hold Time after Power-Down Entry E1 High Hold Time following E2 High after Power-Down Exit (Deep Power-Down Mode only) E1 High Hold Time following E2 High after Power-Down Exit (not in Deep Power-Down Mode) E1 High Setup Time following E2 High after Power-Down Exit E1 High to G Invalid Time for Standby Entry E1 High to W Invalid Time for Standby Entry Input Transition Time
10 85 300 1 0 10 10 1
Applicable also to Power-up. Applicable when 4M, 8M or 16M Partial Power-Down mode is programmed Some data might be written into any address location if tEHWL (min) is not satisfied. The Input Transition Time (t ) at AC testing is 5ns as shown below. If actual t is longer than 5ns, it may violate AC specification of some timing parameters.
Figure 23. Power-Down Programming AC Waveforms
tAVAX A0-A20
MSB 2 MSB 2 MSB 2 MSB 2 MSB 2 PDCADD3
tAXAV E1
tAXAVL 4
G
W
LB, UB
DQ0-DQ15
RDa Cycle 1
RDa Cycle 2
RDa Cycle 3
00 Cycle 4
PDCD4 Cycle 5
RDb Cycle 6
AI07225c
Note: E2 = High. 1. All address inputs must be High from Cycle 1 to Cycle 5. 2. PDCADD stands for Power-Down Configuration Address. It must be compliant with the format specified in Table 6 otherwise the data programmed during the Power-Down Program sequence may be incorrect. 3. PDCDAT stands for Power-Down Configuration Data. It must be compliant with the format specified in Table 5 otherwise the data programmed during the Power-Down Program sequence may be incorrect. 4. tEHEL after the end of Cycle 6, the Power-Down Program is completed and the device returns to normal operation.
24/29
M69AR048B
Figure 24. Power-Down Mode AC Waveforms
E1 tEHCH E2 tCLEX DQ0-DQ15 tEXCH tCHEL Hi-Z
Power-Down Entry
Power-Down Mode
Power-Down Exit
AI09394
Figure 25. Power-Up Mode AC Waveforms
E1 tEHEV E2
VCC
VCCmin
AI09395
Figure 26. Standby Mode Entry AC Waveforms, After Read
E1 tEHGL G tEHWL
W Read Active Standby Write Active Standby
AI09396
Note: E2 = High.
25/29
M69AR048B
PACKAGE MECHANICAL
Figure 27. TFBGA48 6x8mm - 6x8 ball array, 0.75 mm pitch, Package Outline, Bottom View
D FD FE SD D1
SE BALL "A1" E E1 ddd
e e A A1 b A2
BGA-Z26
Note: Drawing is not to scale.
Table 14. TFBGA48 6x8mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data
millimeters Symbol Typ A A1 A2 b D D1 ddd E E1 e FD FE SD SE 8.000 5.250 0.750 1.125 1.375 0.375 0.375 7.900 - - - - - - 6.000 3.750 0.350 5.900 - 0.260 0.900 0.450 6.100 - 0.100 8.100 - - - - - - 0.3150 0.2067 0.0295 0.0443 0.0541 0.0148 0.0148 0.3110 - - - - - - 0.2362 0.1476 0.0138 0.2323 - Min Max 1.200 0.0102 0.0354 0.0177 0.2402 - 0.0039 0.3189 - - - - - - Typ Min Max 0.0472 inches
26/29
M69AR048B
PART NUMBERING
Table 15. Ordering Information Scheme
Example: Device Type M69 = 1T/1C Memory Cell Architecture Mode A = Asynchronous Operating Voltage R = 1.65V to 1.95V Array Organization 048 = 32 Mbit (2Mb x16) Option 1 B = 2 Chip Enable Option 2 L = Low Leakage Speed Class 80= 80ns (Access time = 70ns for VCC = 1.75V to 1.95V) 85= 85ns (Access time = 70ns for VCC = 1.75V to 1.95V) Package ZB = TFBGA48, 0.75mm pitch Operative Temperature 8 = -30 to 85 C M69AR048 B L 80 ZB 8
The notation used for the device number is as shown in Table 15. For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest STMicroelectronics Sales Office.
27/29
M69AR048B
REVISION HISTORY
Table 16. Document Revision History
Date July 2002 27-Sep-2002 09-Oct-2002 12-Mar-2003 Rev. 1.0 2.0 2.1 3.0 First Issue Document completely revised. Part Numbering clarified Part Numbering changed Document completely revised. Speed class changed to 80ns. Timing diagrams changed. Voltage levels for operating modes changed. 85ns speed class added. Correction to signal description in Write Mode section; tBLQZ,ELQZ,GLQZ renamed as tBLQX,ELQX,GLQX in Read Mode AC Characteristics; a minor label correction in a timing diagram; and value of tEXCH(min) changed Values for tPRC, tRC and tWC corrected in Read Mode and Write Mode AC Characteristics tables Binary address column in Address Key table corrected 70ns speed class added. tEXCH timing modified in Table 13, Standby Mode AC Characteristics. Entries for tAVEL and tEHAX corrected to -5ns. Document status set to Preliminary Data. Chip enable signals E1 and E2 must change together during Power-on sequence Input capacitance added to Figure 5., and title changed to AC Measurement Load Circuit 1. Figure 6., AC Measurement Load Circuit 2. Table 11., Read Mode AC Characteristics, and associated notes modified. tEHQV parameter changed to tEHQX in Figure 9., Address and Output Enable Controlled, Read Mode AC Waveforms. Note 2 to Figure 10., UB/LB Controlled, Read Mode AC Waveforms, modified. "Data key"and "Address key" replaced by "Power-Down Configuration Data" and "PowerDown Configuration Address". "Sleep" replaced by "Deep Power-down". Write Mode section corrected. All drawings converted to STMicroelectronics standard. For conformity with Figure 13., Chip Enable Controlled, Write AC Waveforms, tEHDX, tBHDX and tWHDX changed to tEHDZ, tBHDZ and tWHDZ, respectively in Table 12., Write Mode AC Characteristics. Datasheet status updated to Full Datasheet. Note 3 removed from in tBHQZ, tEHQZ and tGHQZ Table 11., Read Mode AC Characteristics. Revision Details
22-Apr-2003
3.1
24-Apr-2003 16-Jun-2003 04-Jul-2003 07-Jul-2003 17-Jul-2003
3.2 3.3 3.4 3.5 3.6
07-Apr-2004
4.0
5-Oct-2005
5.0
28/29
M69AR048B
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. (c) 2005 STMicroelectronics - All rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore Spain - Sweden - Switzerland - United Kingdom - United States www.st.com
29/29


▲Up To Search▲   

 
Price & Availability of M69AR048B

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X